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BASIC SHOCK AND VIBRATION THEORY

by Dale Pennington

Shock and vibration are motions in mechanical
systems. Vibration is an oscillating motion about a
reference point. Shock is a transient motion. In many
cases, these motions areundesirable, even destructive.
In order to measure and control them, it is necessary
to understand their basic natures.

Mechanical motions can be divided into two gen-
eral classes: periodic motions, which repeat after a
fixed time interval, and aperiodic, which do not. Shock,
of course, is aperiodic. Vibration may be either.

Simple Harmonic Motion

The simplest form of periodic motion may be rep-
resented (Fig.1) as the projection of a rotating vector
on a vertical axis as it moves with uniform circular
motion (constant angular velocity w).
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As A rotates, x varies in length. The variation
is plotted against wt. By inspection,

x = A sin wt. (1)

After completing one entire rotation (or cycle) of
2n radians, the wave repeats. The time required to
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accomplish one cycle is defined as the period (T) of
the motion. Since for one cycle, wt = 27, the period
is clearly

T = (2)

f=s—- (3

Equation 1 is plotted as a function of time in Fig-
ure 2.

1

Figure 2

For the (more general) case where x is not zero
when t = 0, the equation becomes

x = A sin (wt + @), (4)

where ¢ is known as the phase angle. Equation 4 des-
cribes a wave with the same frequency as A sin wt but
which is displaced from it by ¢ degrees, or by ¢/w

seconds.
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Using the method of rotating vectors, the relation-
ship between two such functions is shown in Figure 3.
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Equation 1 represents a vibratory displacement.
The corresponding velocity and acceleration are de-
termined by successive time differentiations.

v=d—x--o)A cos wt
dt

d*x .
a=— = —w?A sin wt
de?

Using trigonometric identities, these can be re-
written as:

v = wA sin (wt + 7/2)

a = w?A sin (ot + )

These equations show that the velocity and ac-
celeration are also sinusoidal functions. They are of
the same frequency as the displacement, but displaced
along the time axis. Velocity leads the displacement
by a phase angle of 7#/2, or 90°. The acceleration
leads by 180°. (These quantities may, of course, also
be represented by rotating vectors, as in Figure 3.)

For any sinusoidal wave, the definitions of Fig-
ure 4 apply. Equivalent values are:

.707 x peak
Average = .637 x peak

rms

Peak to peak = 2 x peak

1 Db
]

AVERAGE R;\S PEAK-TO-PEAK

Figure 4

As an example, suppose the peak value of the
function of Figure 4 is 10 g (where one ‘‘g’’ is the
acceleration of gravity = 32 ft/sec? = 386 in./sec?).

It can also be expressed as:
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10 g vector

10 g maximum
+10g
7.07 g tms
6.37 g average

20 g peak-to-peak

All are equal to 10 g pk.

Complex Motion

Although harmonic motion is periodic, not all
periodic motion is harmonic. Figure 5 is an example
of a complex wave whose motion is periodic.

Figure 5

Analysis of complex waves would be very dif-
ficult but for a relationship proved by Fourier which
shows that all periodic waves can be represented as
a sum of sinusoidal, or simple harmonic waves. (The
frequency of the component waves are harmonically
related: t.e., they are simple multiples of the funda-
mental frequency of the complex wave in question.)
This representation is known as a Fourier Series; and
is generally written:

x = Ay sin (0t + @) + Az sin 2wt + ) + . . .

or
x=A + 2, Aysin(kot+d)." (5)
k=1

For example, the complex wave of Figure 5 can
be shown to be the sum of two harmonically related
sinusoids:

Xy = A; sin wt X2 = A sin 2wt
(in this instance, ¢ = 0). Algebraic addition yields

X = X; + X = A; sin ot + Ay sin 2wt,

which is the equation of the curve in Figure 6. (The
function x can be plotted by graphical addition of
curves x; and x,.)

Ly,
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Figure 6

It should be pointed out that the simple relation-
ships between displacement, velocity and acceleration
found for simple harmonic motion do not apply in com-
plex motion. The velocity and acceleration functions
that can be determined by graphical differentiation of
the displacement or by differentiating the Fourier
series will be seen to possess an entirely different
wave shape than the related displacement.

It is also important to note that the simple numer-
ical relationship between peak, rms and average in
harmonic motion values are not valid for complex
waves. For complex waves, more rigorous definitions
must be used:

1 T

Xaversge = T J x (¢) dt ©6)
1 T

X = T of [x (D)2 dc. (7)

Dynamics: Free Vibration
of an Undamped Single
Degree of Freedom System.

A simple spring-mass system is shown schemat-
ically in Figure 7. The mass m is free to move verti-
cally and is attached to a fixed (immovable) support
by spring k. The position of mis completely described
by 1ts distance along the vertical axis. (Since only
one coordinate, x, is needed to describe the location
m, the system is defined as a single degree of free-
dom system.)

If the mass is displaced a distance x from its
equilibrium position®* and released, the only force
acting on it is the elastic restoring force of the
spring, —-kx, where k is the spring stiffness. The
resultant motion is governed by Newton's second law,
F = ma, which becomes —kx = ma, or:

d’x

—kx:mF .

* When the mass is first attached, the spring will
stretch a small amount §, known as the static deflection.
At equilibrium, the effect of gravity on m is just bal-
anced by the restoring force of the spring, or, W = —kd.
(The minus sign is introduced since the force acts op-
posite to the deflection 8.)

Rearranging terms:

2
mﬂncx:o, or
de?

2
jtj+<§>x=o. (8)

A general solution of this differential equation is

x=Asin<\/’% t+¢),

which is seen to be the same form as Equation 4, the
general equation for simple harmonic motion.

</ (PSRRI /,

AAA
VAA-

———y—
|

I
— — annnd

Figure 7

Therefore, the spring-mass system of Figure 7
undergoes sinusoidal vibration with an angular ve-
locity of

w= l(- (9
m

T=2n TT' (10)

b= N an
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The system described above will, once started,
continue to vibrate at its natural frequency forever,
unless some opposing force is introduced. For ex-
ample:

A 16-pound weight suspended from
a helical spring produces a static
deflection of 6 inches. What is the
natural frequency of this system?

m=¥_ _ 161 = .5 Ib-sec?/ft.
g 32 ft/sec?
16 Ib
k=_gi= = =32 lb/fe.
fn__zln 3_52 :é - 1.27 Hz

Free Vibration of a Damped
Single Degree of Freedom System

Observation of actual vibrating systems, such as
bells and tuning forks, shows that vibrations, once
initiated, do not continue forever but eventually die
out because of friction effects. We say that these
vibrations-are damped. If the mass of Figure 8 is dis-
placed a distance x and released, its motion will be
determined not only by spring k, but by the damper of
damping coefficient c¢. The effect of the damper is to
introduce a viscous damping force —cVY, which is pro-

Figure 8

portional to the velocity of m and which opposes that
velocity. The equation of motion now becomes:

ma = =kx — ¢V

d%x dx

m = ~kx —- c——=
de? de
d%

m +c-d—x-+kx=0
de? de

2
dx fe\dx (kN .o (12)
de? m/ dt m
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The solution of Equation 12 depends on how much
damping is present. Let us arbitrarily define the term
critical damping ¢c¢c as ¢, = 2m Vk/m. Then any
amount of damping can be discussed in terms of its

ratio to critical damping. The damping ratio is com-

monly written as { = c/ce.

Less than Critical Damping

For the case of little damping (§{ <1) the solution

_ of Equation 12 is:

—ct

x = Ae ™

sin (wt + &), (13)

k
@ =4 ’—m'(l -9

This is a sinusoidal vibration with diminishing amp-
litude as shown in Figure 9. (The rate of decay of the
vibration amplitude is conveniently expressed in terms
of the logarithmic decrement (A), defined as the natural
logarithm of the ratio of any two successive peaks
2rt )
vI-¢?

where

(A=1In -:—1). In terms of ¢, this becomes A =
2

Figure 9

Critical Damping

When ¢ = ¢, ({ = 1), the solution of Equation 12
becomes
—ct

x=(A+Bt)czm. (14)

In this case there is no oscillation and the motion
is as shown in Figure 10. Critical damping can be
described as that degree of damping for which the
mass will return to its equilibrium position in the
least time without oscillation.

Greater than Critical Damping
Where ¢ is larger than c. ({>1), the solution to
Equation 12 is:

—ct

x=e m [Ae""t + Be-w‘], (15)

N
© = ;1(§2—1) .

where

o,



Again there is no oscillation. The mass returns to its
equilibrium position more slowly than when critically
damped (Fig. 10).

~=—CRITICAL DAMPING

/ OVERDAMPING

v

Figure 10

Forced Vibration of a Damped
Single Degree of Freedom System

So far the only case considered is that for which
the mass is displaced a given distance and released.
The resulting free vibration eventually dies out be-
cause of energy dissipation in the damper. By sup-
plying additional energy to the vibrating system, the
amplitude of vibration can be maintained.

Consider the system of Figure 11, in which a
sinusoidal forcing function Facts upon the mass. The

equation of motion is:

ma=—kx —cV+ F

2
md—x +c§-+ kx=F
de? dt

2
-:?x+<-[c;)-:—:+<£>x=l:o sin wt . (16)

Allowing sufficient time for the system to settle
down to steady-state oscillation, the solution of Equa -
tion 16 can be written:

X = A sin (ot — ), (17)

Fo

where A=

J(k -—mcuz)2 + (cw)?
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cw

and tan ¢ =
k - mo?

We introduce two new terms:

Wn = o ’ %: the undamped natural frequency

F
A““““:_k?': the static deflection of the system

due to a constant force Fg.

It is now possible to normalize the expressions

for A and ¢ to the following:

A 1
R=—"—= (18)
Agtatic ﬂ __[f)_:l 2>2 + (2(—)2
wﬂ n
20
tan ¢ = —— -+ 19)

The relative response R (or magnification factor) and
phase. angle ¢ can now conveniently be plotted as
functions of only two variables: the frequency ratio
£_ and the damping factor { (see Fig. 12 and 13).

PHASE ANGLE

i
;
|
!
i
|
i
|
I
i

10 29 39 “o 50

FrauENCY MTIO B

Figure 13
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These curves show that both the vibration ampli-
tude and the phase angle (between the forcing function
and the resultant displacement of m) are strongly af-
fected by the damping ratio and the frequency of
vibration. In general, as damping becomes smaller
amplitude of vibration at resonance becomes larger.
Small values of damping are said to produce high “*Q”’
resonance. (In theory, with zero damping the vibration
amplitude could become infinitely large.) Also, for
small damping the pase angle shifts more rapidly from
0° to 180°. For lightly damped systems, on: technique
for finding resonance is to determine the frequency of
90° phase shift.

Aperiodic Motion: Random Vibration

Random vibration is a continuous oscillating mo-
tion whose instantaneous amplitude can be predicted
only on a probability basis. It may be considered as
being composed of a continuous spectrum of frequen-
cies whose individual amplitudes are varying in a ran-
dom manner. Random motion is obviously aperiodic and
is described mathematically in terms' of statistics,
rather than trigonometeric functions. Figure 14 is a
plot of random acceleration vs. time. At any given in-
stant (1), the probability that the acceleration value is
between a, and a, + da is defined as: p (a) da. Fora

normal process:
1 a?
— CXp{-—
o\ 27 20?

p(a)= 20)

Qo

da
A"/\\ /N\ A A //\VA\ !
W

t
Figure 14

This equation, known as a Gaussian or Normal
Distribution,is plotted in Figure 15 as a function of a.

The probability that the instantaneous value of ac-
celeration is between a; and a, is given by:

S et [
(a) da = — - d
p ; 2 exp< ) a

a; a2 2 03

which is the shaded area under the curve of Figure 15.

Probability Density

Since the amplitude probability is the product of p (a)
and an acceleration value, p (a) is commonly refer-
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red to as the probability density. Equation 20, then,
describes a Gaussian probability density function.
(The only vibrations considered here will be those
which are described by Equation 20. It will also be
assumed that the random vibration is stationary -- that
is to say that its statistical properties are unaffected
by a translation of the time axis.)

p(a)

Q,d,
Figure 15 a

The quantity o is defined as the root mean square
deviation of the instantaneous acceleration from the
mean acceleration value. For random acceleration, the
mean acceleration value is zero, so that ¢ reduces
simply to the rms value of the instantaneous acceler-
ation.

The probability density curve is usually normal-
ized -~ that is, the scales are so adjustedthat the
total area under the curve is unity, which is to say
that the total area under the curve represents certainty,
with a probability of 1.

Referring to Figure 16, the probability that the in-
stantaneous value of acceleration is between ta, is
equal to the shaded area under the normalized prob-
ability density curve.

Random Amplitude Sine Wave

From a damage standpoint, peak values of accel-
eration may become more important than instantaneous
values. Suppose the random vibration signal is passed
through a narrow bandwidth filter. The result will be a
single frequency wave with randomly varying ampli-
tude, or random amplitude sine wave.

For such a wave, the probability of an acceleration
pcak having a value between a, and a, + da, is defined
as:

p (a,) da,
a, a,?
Where P (ap) = — exp(— ) (21)
o2 2 o2
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Figure 16
This equation, known as a Rayleigh distribution, az 1 az a,?
is plotted in Figure 17 as a function of a,. f pf(ap)da, = — a, exp | - a,
a, o2 a 2 02

which is the shaded area under the curve.

By analogy with the previous discussion of in-
stantaneous acceleration, p(a,) is a probability density
function for peak accelerations, or equivalently, of the
envelope of the random sine wave.

Referring to Figure 18, the probability that the

peak acceleration is between o and a;, is equal to the
shaded area under the normalized probability density
p(G p) curve.

A single frequency component of a random vibra-
tion will vary randomly in amplitude. This component
cannot, therefore, be specified by its peak value. In-
stead, its root mean square (rms) value, which does
not vary with time, must be used.

W\\\.

a; d; The rms value of a single frequency wave is easily

C'p defined. Random vibration, however, contains a con-

. tinuous distribution of frequencies. Since any actual

Figure 17 bandpass filter used in practice has a finite bandwidth,

it will pass frequencies adjoining the center frequency

of interest. To determine the contribution of a single

From Equation 21, the probability that the peak frequency, it is necessary to divide the filter output
value of acceleration is between a; and a, becomes by its bandwidth. If output is in rms gs, it is divided

9|2
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B
by the square root of the bandwidth (yielding 7 ). If
\

Hz

output is in mean squared gs, it is divided by the band-

)

. .og?
width in Hz (yielding
z

Power Spectral Density Plot

Random vibration is normally plotted in the latter
units as a function of frequency. Figure 19 illustrates
a typical power spectral density plot. (Power, the rate
of doing work, is proportional to the square of the vi-

2

bration amplitude. Hence a plot vs. frequency

Hz
shows the power distribution of the vibration as a func-

tion of frequency.)

The shaded area under the PSD curve is given by

fy
3l = f G (f) df (22)
f1

and represents the mean squared acceleration between

f; and f,.

The rms acceleration (between frequencies f; and
f,) is therefore equal to the square root of the shaded
area of Figure 19.

@

fs]
©Q
g
S

f(Hz)
Figure 19

Random vibration which exhibits a constant accel-
eration density 1s called a white noise. In the casc of
white noise, Equation 22 simplifies to:

aZ- G, B

and a,,s =\ GB (23)

when G, = constant acccleration density and B = band-
width under consideration.

Random vibration is important because it it fre-

quently encountered in nature. Rocket engines are
typical random vibration gencrators. Fortunately, the
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rms acceleration level, which is easily measured, has
statistical significance. The amplitude of random vi-
bration is most often specified as an rms acceleration
over a given bandwidth and as an acceleration density
vs frequency.

Dynamics

The behavior of the system illustrated in Figure 8
(EQ, Sept., 1962, Pg 22) was examined for a forced vi-
bration of the mass. If the forcing function is applied
instead to the support, the resultant motion of the mass
or transmissibility of the system becomes:

) 2

T = (24)

@ 2\2 ) 2
1—|— + [2¢
Cn [

If the forcing function is random sine wave
(single frequency) the resultant motion of the system
is the same as for a pure sinusoidal input. The pro-
duct of the input excitation and the system transmis-
sibility is a = a, T, where a = resultant system accel-
cration, a, = input acceleration (of support), T = trans-
missibility.

In terms of squared acceleration:
a2 =32 T2

where a2 = mean squared resultant acceleration and
A2 = mecan squared input acceleration.

Since only a single frequency is present, a2is
equal to G(f), the mean square acceleration density. If,
instead of a single frequency, the input is a random
vibration the overall mean squared response is the sum
of the mean squared responses to the component fre-

quencies:
a2 = f T2 G(f) df (25)

Simple Impulse

Mechanical shock, although difficult to define
rigorously, can be expressed as a sudden, non-periodic
disturbance involving relatively large motions in a
system within a short {in relation to the natural period
of the system) time interval. Since shock occurs in
infinite variety and can be very complex, it is useful
to examine several simplified types of shock motion
as an introduction to more complex forms.

The simplest concept is that of a simple impulse,
or velocity shock (Fig. 20). In this case the shock
motion is an impulse of extremely short duration and
large acceleration which results in a step velocity
change. In the (ideal) limiting case the pulsc duration
approaches zero and the amplitude becomes infinitely
large.

R
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Figure 20. Impuise or velocity shock: {a) as a function of accelera-
t'on, (b) as a velocity-time function.

This (acceleration) motion is expressed analyti-
cally as:

. Vo
a(t) = lim  — (26)
At->0 Ar

An alternative expression defines a(t) in terms of
the Dirac function, 8(t) [defined as zero for t £ 0 and

infinite at t = 0 such thatf 3 (t)dt = 1] and is:
a(t) = vy 0(t) (27)

This type of shock is approached in collisions be-
tween very hard materials, such as steel impacting on
steel.

Perhaps the most common type of shock encount-
ered in test work is the simple pulse, specified by its
acceleration amplitude, time duration and pulse shape.
Examples are the half sine, square wave and sawtooth
pulses.

The half sine pulse (Fig. 2la) has been used ex-
tensively. It is not only easy to generate but yields
readily to mathematical analysis. It is expressed
analytically as:

(28)

TP 219

A

t t t
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Figure 21. Simple pulse shapes: (a} half sine, (b} square wave,
(c) sawtooth {terminal peak).

A rigid mass dropped onto a pure linear spring will
experience ahalf sine acceleration pulse as the spring
compresses and then expands.

The square wave, or, more accurately, rectangular,
pulse (Fig. 21b) is simple in concept, but can only be
generated approximately. The infinite slopes at time
0 and time T necessitate instantaneous rise and decay
times, and no equipment yet exists that can meet this
requirement. The square wave is analytically expres-
sed as:

a(t) = A [0<e<T]

(29)

a(t) = 0 [e>T, t<ol]

Successful square wave production normally re-
quires fairly sophisticated equipmen., such as shock
machines utilizing metered fluid flow for pulse shap-
ing. One important feature of this pulse shape is its
rich content of higher frequency harmonics.

The sawtooth pulse (Fig. 21c) is characterized by
an acceleration that increases linearly to a maximum
level, and then drops abruptly to zero. Again, the in-
stantaneous decrease to zero can only be approached,
but the sawtooth form is nevertheless sufficiently
valuable as to be rapidly becoming the recommended
pulse for many types of test work. The (terminal peak)
sawtooth is expressed analytically as:

A
a(ty=—t [0<e<T]
T

(30)

a(t) = 0 [e>T, e< 0]

One popular technique for obtaining this pulse
shape involves dropping a suitably mounted test spec-
imen onto a deformable pellet, commonly a small
cylinder of lead.

Another and different type of shock motion is the
decaying sinusoid, or transient vibration, shown in
Figure 22. This motion is identical to the free vibra-
tion of an under-damped single degree of freedom
system, which was discussed earlier. It is expressed
analytically as:

a(t) = A exp —2C—t sin (wt + @) [t > 0] (31)
m .
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Figure 22. Decaying sinusoid or transient vibration.

(Compare with Eq. 13.) This motion may be con-
sidered as the simplest type of shock respanse. It may
be generated by exciting a lightly damped single degree
of freedom system (Fig. 8) with a simple impulse.

Complex Shock

The complex shock shown in Figure 23 is typical of
actual data obtained in the field. Because of its highly
complex nature, a shock motion of this type cannot be
described analytically; because of its frequent occur-
ence in practice, it cannot be ignored. As a result,
powerful methods have been developed to deal with it.
Very large equipment interacts with, or loads a shock
machine to which it is attached, with the result that
transients generated by the machine produce complex
shock. Equipment mounted in vehicles may experience
complex shock that is the end result of a shock load—
such as an aircraft landing — which 1is transmitted
through the vehicle structure.

Figure 23. Complex shock.

Fourier Integral
In the discussion of complex vibration, it was pointed
out that all periodic waves can be represented as a sum
of sinusoidal or simple harmonic waves, and that such
a representation is known as a Fourier Series. The
various Fourier components occur at discrete frequen-
cies, as shown in Fig. 24, the Fourier spectrum of the
complex wave. In a similar way, any non-periodic func-
tion may also be represented as a sum of sinusoidal
components. In contrast to the periodic case, however,
the Fourier spectrum of a non-periodic transient wave
is a continuous function (Fig. 25) and is obtained by
integration. The Fourier integral of a shock wave is
written :
+ o0
F(w)= fa (1) exp (—jwr) dt (32)

_—00
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(o)

Relotive Response

. l l 1 .

w Jw Sw 7 W W
w

(b}
Figure 24. (a] Square wave showing first three sinusoidal com-
ponents, (b) Fourier spectrum of square wave {periodic).

RELATIVE AMPLITUDE

o 100 200 200 400
f(Hz)
®)

Figure 25. Non-periodic transient: (a) 10 msec rectangular pulse, (b]
Fourier spectrum of a 10 msec rectangular pulse.

In addition to its value in data reduction, Fourier
spectral information is useful in determining the re-

quired frequency response of instrumentation used for

shock measurement. For instance, the measurement of
shock often requires better low frequency response
than might be anticipated from the basic shape of the
transient pulse. As an example, it may seem at first
glance that a single ten-millisecond half sine, rectangu-
lar, or sawtooth pulse contains no frequency compo-
nents lower than 50 Hz, the frequency corresponding to
a ten-millisecond half period and/or a twenty-milli-
second full period of a continuous sine wave.

EES



In the case of the continuous and repetitive wavetorms
shown in Figure 26, there are no frequency components
lower than 30 Hz The repetitive square wave contains
higher harmonics in addition to the fundamental 50 Hz
frequency. The only frequency component of the sine
wave 15 30 Hz

— t
—"l 10' msec L—
(a)
U |
J 10 msec L
(®)

Figure 26. Repetitive wave forms.

If the square pulse is a repetitive transient, a new
situation exists. In the case of Figure 27, a 10 milli-
second square pulse is repeated at a rate of 10 times
per second. In this case the lowest frequency compo-
nent exclusive of the DC average is 10 Hz, correspond-
ing to the repetition rate of the pulse.

_—.-l '———IO msec

l———loo msec ———l

Figure 27. Repetitive rectangular puise—lowest frequency com-
ponent |0 Hz

If the repetition rate is slowed and the time between
pulses lengthened, the lowest frequency component is
correspondingly reduced. With one pulse per second.
the lowest frequency is 1 Hz. With one pulse per min-
ute, the lowest frequency is 0.0167 Hz.

A single pulse corresponds to the situation where the
time between pulses is lengthened until it becomes in-
finite; the lowest frequency component then approaches
zero Hz . The relative frequency spectrum of a single
10 millisecond rectangular pulse is shown in Figure 23.

If a small amount of distortion can be tolerated, re-
sponse all the way to zero frequency is unnecessary.
However, response below 5 Hz is normally advisable

TP 219

for pulses that exceed several milliseconds in duration.
Much of the spectrum of the pulse in Figure 25 will
be lost if the measuring system has no response below

30 Hz.
Shock Spectrum

If an undamped linear single degree of freedom
svstem is subjected to some given shock motion input,
the resultant motion, or response, of the system wili
be determined by (1) the amplitude, pulse shape and
time duration of the shock input, and (2) the system
natural frequency. Response of such a system to various
pulse shapes and durations is shown in Figures 28 and
29,

2.0 20 2.0
w2
wE
A
Sic 10 - 10 - ~ 1.0
7N [
®'T Y
e / \ \
= 7 \ B ¥
3 \ \ /\
E Q o 0
i T 2 T T2 T\I \ T/2 T
&
% o o o

-1.0 = ~1.0 - =1.0

TiME
- fa) ~- ®) - {e)

Figure 28. Acceleration response fo a half sine acceleration puise,
of duraticn T, of an undamped single degree of freedom system
whose raturel pericd is equal to: (a) 1.014 times the pulse dura-
tion, (b} 0.338 times the pulse duration, and (c} 0.203 times the
pulse duraticr {afrer Levy and Kroll}.

¥z |
g3
23

Q i
3 {]
: 1
Q

3

Y T/ T TN u V |

o5l 0.5 6.5
TIME
(o) ® {e)

Figure 29. Acceieration response to a rectangular acceleration
puise. of duration T, of an undamped single degree of freedom
system whose natural pericd is equal to: (a) 1.014 times the pulse
duraticn, (b) 0.338 times the pulse duration, and (c) 0.203 time;
the pulse duration (after Levy and Kroll).

Suppose that several such resonators, each with a
different natural frequency, are mounted to a rigid
structure and subjected to the same shock input. If
the maximum response of each system is recorded and
plotted as a function of resonant frequency, the result
ix the response spectrum for that shock input. In prac-
tice, a continuous spectrum—corresponding to a very
large number of resonators differing only slightly from
one another in natural frequency—is normally plotted.

In particular, a shock spectrum is usually defined as
the maximum acceleration responses of a series of
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simple systems to the shock motion (Fig. 30).
Examination of Figures 28 and 29 shows that the
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Figure 30. Shock spect-um of: {a) o haif sine pulse of period T,
and (b) a terminal peak sawtooth of period T (after Lowe]).

response of a system during application of a shock may
differ considerably from the residual motion after the
shock input has ended. Because of this, it is customary
to cousider the primary spectrum (response during
shock input) and the residual spectrum (response after
shock input) separately. The primary spectrum defines
a response that always has the same direction as the
applied acceleration, while the residual spectrum defines
peak acceleration in both directions. The residual spec-
trum is important not only in providing more informa-
tion about dynamic loading, but because it also indicates
the fatigue loading due to flexural motion. In view of
this, it can be seen that a shock test that provides a flat
response in both the primary and residual spectra
would be highly desirable. Such a test would be equally
severe in the loading it imposes on all equipments
tested, regardless of their natural frequencies. Further,
a spectrum that rises smoothly to about 100 {Hz and is
flat for all higher frequencies is a very good average of
the shocks actually encountered in transporting and
handling equipment. A terminal peak sawtooth accelera-
tion pulse exhibits a spectrum of this type. In addition,
the primary and residual spectra are almost equal (Fig.
30b).

Shock spectra can be used to compare intensities of
different shocks and are directly applicable to several
dynamic design techniques, and the numbers quoted
correlate better with the damage potential of the related
shock. The difficult job of placing tolerances on pulse
shapes is avoided and tests can be conducted that com-
pare very well with actual field conditions. One of its
great values is that it permits useful analysis of com-
plex shock. It should be remembered that the shock
spectrum tells what a shock does, not what it is.

ENDEVCO

M MODEL 2270 ( :

Model 2270

Primary Standard Accelerometer
The Model 2270 Accelerometer Standard
is a combination accelerometer and cali-
bration fixture for performing comparison
calibration on other accelerometers. Ex-
tremely high stability is achieved by use
of Piezite® Type P-10 crystal element.
When calibrated by the reciprocity
method, an absolute calibration, the error
in sensitivity of the Model 2270 is +£0.5%
at 100 Hz. Adapters provide for mounting
test accelerometers with a variety of stud
sizes. Calibration ranges are 5 Hz to
10,000 Hz and 0.2 g to 10,000 g.

.z\“ °o° oa

Model 2271A and 2275

Precision Isobase®

Accelerometers

The Models 2271A and 2275 piezoelec-
tric accelerometers feature extremely
low output sensitivity to strain or the
bending of their mounting surface. Their
wide and useful dynamic characteristics
of 2 Hz to 5500 Hz and 0 to 10,000 g per-
mit them to be used for most shock and
vibration measurements. Transverse sen-
sitivity is very low, 2% maximum. Flat
charge-temperature response, *3%
nominal, over the range of —300°F. to
+500°F., is achieved with Piezite® Type
P-10 crysta! material.
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